Proposed Technology Overview
Learn about the cutting-edge technologies powering Arcen Research's adaptive cyber-physical systems.
Core Concepts
Adaptive Cyber-Physical Systems
Cyber-physical systems (CPS) integrate computational and physical processes. Our adaptive CPS go further by:
- Self-monitoring: Continuous data collection from sensors and actuators
- Real-time analysis: Processing data at the edge for instant insights
- Autonomous adaptation: Automatic adjustment based on learned patterns
- Collaborative learning: Sharing knowledge across systems while preserving privacy
Architecture Overview
┌─────────────────────────────────────────────────┐
│ Orchestration (Flower Server) │
│ Global FedAvg Aggregation │
└─────────────┬───────────────────────────────────┘
│ Kubernetes (k3s)
┌─────────┴─────────┐
│ │
┌───▼────────┐ ┌────▼─────-┐ ┌────────────┐
│ Linux PC │ │ Rasp Pi │ │ Arduino │
│ (x86_64) │ │ (ARM64) │ │ Uno Q MPU │
│ flwr Client│ │flwr Client│ │ flwr Client│
└───┬────────┘ └────┬─────-┘ └──────┬─────┘
│ │ │
┌───▼────────┐ ┌───▼────────┐ ┌───▼────────┐
│ Local │ │ Local │ │ Local │
│ Training │ │ Training │ │ Training │
│ (Private) │ │ (Private) │ │ (Private) │
└────────────┘ └────────────┘ └────────────┘
Edge Computing
What is Edge Computing?
Edge computing brings computation and data storage closer to the data sources. This reduces:
- Latency: Sub-millisecond response times for critical operations
- Bandwidth: Only relevant data is sent to the cloud
- Privacy risks: Sensitive data stays local
Edge Node Capabilities
Each Arcen edge node can:
- Data Collection: Interface with industrial protocols (Modbus, MQTT)
- Local Processing: Run inference models on-device
- Decision Making: Execute control logic autonomously
- Model Training: Participate in federated learning
Supported Hardware
Tested Devices:
- Linux PC (x86_64) - Primary compute node
- Raspberry Pi 4 (ARM64) - Low-power edge processing
- Arduino Uno Q MPU (ARM64) - Ultra-low power inference
- NVIDIA Jetson Series (Nano, Xavier, Orin) - GPU acceleration
- Industrial PCs with compatible GPUs
Multi-Architecture Support:
- AMD64 (x86_64) images for desktop/server
- ARM64 images for Raspberry Pi and embedded
- Docker manifests for automatic architecture selection
Kubernetes Orchestration
We use k3s (lightweight Kubernetes) for edge deployment:
# Master node (Linux PC)
curl -sfL https://get.k3s.io | sh -s - --write-kubeconfig-mode 644
# Worker nodes (RPi, Arduino)
export K3S_URL="https://<MASTER_IP>:6443"
export K3S_TOKEN="<TOKEN>"
curl -sfL https://get.k3s.io | K3S_URL=$K3S_URL K3S_TOKEN=$K3S_TOKEN sh -
Why k3s?
- Lightweight: < 100MB binary
- Edge-optimized: Low resource footprint
- Full Kubernetes API compatibility
- Perfect for heterogeneous device clusters
Federated Learning
Privacy-Preserving ML with Flower
We use Flower (flwr) framework for federated orchestration. Edge nodes collaboratively train models without sharing raw sensor data:
# Server configuration
from flwr.server import ServerConfig, start_server
from flwr.server.strategy import FedAvg
strategy = FedAvg(
fraction_fit=0.5,
fraction_evaluate=0.5,
min_fit_clients=3,
min_evaluate_clients=3,
min_available_clients=3,
)
config = ServerConfig(num_rounds=10)
# Start the SuperLink
start_server(
server_address="0.0.0.0:9093",
config=config,
strategy=strategy,
)
Deployment Architecture
Server (Coordination):
- MacBook or other PC
- Runs Flower SuperLink
- Aggregates model updates (FedAvg)
- No access to raw data
Clients (Edge Devices):
- Linux PC, Raspberry Pi, Arduino Uno Q
- Deploy via Kubernetes (k3s)
- Train model locally on sensor or other data
- Send only model weights
How It Works
- Client Registration: Edge nodes connect to SuperLink
- Local Training: Each node trains desired model on local data (CNN for images)
- Weight Upload: Only gradients/weights sent (not data)
- Secure Aggregation: Server performs FedAvg aggregation
- Model Distribution: Updated global model sent back
- Repeat: Process repeats for N rounds
Benefits
- ✅ Data Privacy: Raw data never leaves the device
- ✅ Regulatory Compliance: GDPR, HIPAA compatible
- ✅ Bandwidth Efficiency: Only model updates transmitted
- ✅ Robustness: System learns from diverse environments
Self-Optimization
Optimization Algorithms
Arcen uses advanced algorithms for autonomous optimization:
- Reinforcement Learning: Q-learning, Policy Gradients
- Evolutionary Algorithms: Genetic algorithms for parameter tuning
- Bayesian Optimization: Efficient hyperparameter search
- Multi-objective Optimization: Balance multiple KPIs simultaneously
Optimization Targets
Common objectives you can optimize:
- Throughput maximization
- Energy consumption minimization
- Quality improvement (reduce defects)
- Maintenance cost reduction
- Response time optimization
Example Configuration
optimization:
primary_objective: throughput
constraints:
- max_energy: 1000W
- min_quality: 0.95
algorithm: reinforcement_learning
update_frequency: 30s
Real-Time Monitoring
- Monitor: Collect real-time system metrics
- Analyze: Detect anomalies and patterns using adaptive algorithms
- Plan: Determine optimal adjustments based on current state
- Execute: Apply changes to models
- Knowledge: Update models with outcomes for continuous improvement
System Monitoring
Node Health Metrics
Each edge node continuously reports critical system metrics:
- CPU Usage: Per-core utilization and load averages
- Memory: RAM usage, available memory, swap utilization
- Temperature: CPU/GPU temperature sensors for thermal management
- Disk I/O: Read/write throughput and latency
- Network: Bandwidth usage, packet loss, connection status
Federated Learning Monitoring
Track training progress across distributed edge nodes:
- Training Rounds: Monitor current round vs total rounds per node
- Round Completion: Verify all nodes complete training cycles
- Model Convergence: Track loss and accuracy across rounds
- Participation Rate: Ensure minimum clients meet for aggregation
- Gradient Statistics: Monitor weight updates
- Node Availability: Real-time status of each federated client
Inference Performance
Monitor production inference in real-time:
- Latency: Per-request inference time
- Throughput: Inferences per second across nodes
- Model Accuracy: Live accuracy metrics on inference results
- Energy Consumption: Power usage per inference
- Queue Depth: Pending inference requests per node
Observability Dashboard
Prometheus Metrics Collection
Arcen integrates Prometheus for time-series metrics:
Exposed Metrics:
# Node health
arcen_node_cpu_percent{node_id, architecture}
arcen_node_memory_bytes{node_id, type="used|available"}
arcen_node_temperature_celsius{node_id, sensor}
# Federated learning
arcen_fl_round_number{node_id, job_id}
arcen_fl_round_duration_seconds{node_id, job_id}
arcen_fl_training_loss{node_id, round}
arcen_fl_training_accuracy{node_id, round}
arcen_fl_client_status{node_id, status}
# Inference
arcen_inference_latency_seconds{node_id, model_id}
arcen_inference_throughput{node_id}
arcen_inference_energy_joules{node_id}
Grafana Visualization
Pre-built dashboards for real-time monitoring:
1. Edge Node Overview
- CPU, memory, temperature heatmaps across all nodes
- Network traffic and disk I/O per device
- Alert indicators for threshold violations
2. Federated Training Dashboard
- Training round progress bars for each client
- Loss/accuracy curves overlaid per node
- Client participation timeline
- Global model convergence graph
3. Inference Performance
- Latency percentiles (p50, p95, p99) per node
- Throughput trends over time
- Energy efficiency metrics
- Real-time inference queue monitoring
Integration Capabilities
Protocols Supported
- Industrial: OPC UA, Modbus TCP/RTU, Profinet
- IoT: MQTT, CoAP, HTTP/REST, gRPC
- Time-series: InfluxDB, Prometheus
- Databases: PostgreSQL, MongoDB, TimescaleDB
Security
Built-in Security Features
- Encryption: TLS 1.3 for all communications
- Authentication: OAuth 2.0, API keys, certificates
- Authorization: Role-based access control (RBAC)
- Audit Logging: Complete audit trails
- Secure Boot: Verified firmware on edge devices
Compliance
Our platform is designed for:
- ISO 27001 (Information Security)
- IEC 62443 (Industrial Cybersecurity)
- SOC 2 Type II
- GDPR, CCPA data protection